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Joint probability distributions for a class of non-Markovian processes
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We consider joint probability distributions for the class of coupled Langevin equations introduced by
Fogedby{H. C. Fogedby, Phys. Rev. B0, 1657(1994)]. We generalize well-known results for the single-time
probability distributions to the case bdEtime joint probability distributions. It is shown that these probability
distribution functions can be obtained by an integral transform from distributions of a Markovian process. The
integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-
Markovian character of the process.
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I. INTRODUCTION made an extension to several dimensions introducing a mul-

tidimensional generalization of fractional diffusion, so-called

In recent years, the connections between the continu01,l§p 4 : ; o
. ' i - _ erator Lévy motion. This allows for a description of
time random walKCTRW), which originated in the work of - 5omalous diffusion with direction-dependent Hurst indices

Montroll and Weisq 1], generalizing the idea of Brownian H. defined by the relation[x(t)-x(t=0)]2)~t2". In [9]
random walks, and fractional Fokker-Planck equations ha"ﬁmit theorems of a class of continuous time random walks

been established. For a review we refer the readgZjtdhe  yith infinite mean waiting times have been investigated. It is

solutions of these equations exhibit both super- and subdifp,\vn that the limit process obeys a fractional Cauchy prob-

fusive behavior and are thus appropriate models for a larggyy The emphasis again is put on single-time distributions.
variety of transport processes in complex systgBisRe- e yumose of the present paper is to investigate
cently, a connection between the velocity increment statisticg, , ije-time probability distribution functions for the class
of a Lagrangian tracer particle in fully developed turbulent coupled Langevin equations introduced by FogefiBly

flows and a type of CTRW has been introdu¢édi Here, &\ nich have been considered to be a representation of a con-
closure assumption on a hierarchy of joint velocity-position;n,ous time random walk.

probability distribution function§PDF’s) derived from a sta- The paper is outlined as follows. In the next section we

tistical formulation of the Navier-Stokes equation leads to Bresent the coupled Langevin equations considered by
generallzgtlon of Obukhov's random walk mogi&] in terms Fogedby[7] consisting of a usual Langevin proce&s) in a

of a continous time ran_dom walk. It aIIovy_s for_ a .SUCFeSSfUIcoordinates and a Lévy process representing a stochastic
parametrization of the single-time probability distributions of relationt(s). One is interested in the proceX)=X(s"1(t))

velocity increments. However, there are different suggestion& : :
) ; . d 7 h h h
for the stochastic process of Lagrangian particles in turbu- ogedby[7] investigated the case where the proces(es

; . ..~ “andt(s) are statistically independent and showed how frac-
lence, which are able to provide reasonable approximations

for the single-time velocity increment statistics. This ex-lonal diffusion equations of the forrt) arise. Interesting

ample evidences that one has to introduce further quantitieréESUItS for the case where the processes are statistically de-

in order to distinguish between different stochastic models.penqent have bee.n c_on3|dered by Bgcker—l@rra!. [10]

For non-Markovian processes, the natural extension is thI ading to generahzaurc:ns Olf. thg fractional diffusion gqt:a—
consideration ofN-time joint probability distributions. It t:omnes(%bggx\iltevgirétlr)igbtigr?? ications are devoted to single-
seems that for the class of CTRW'S only single-time prob- In IOSec Il w)é resent a céntral formula, which relates the
ability distributions have been investigated so far. In thatN_. .b b'I'p distributi K h, PDE's 0fX
case fractional diffusion equations of the form _tlme_pro ability distri ““0’.‘39 Mot e s oiX(s)
via an integral transform, which is determined by the process
t(s). In Sec. Il properties of the involved Lévy-stable pro-
cesss(t) are considered, leading to expressions for the PDF

) . ) of the inverse procest). In Sec. V we specify the moments
can be derived. Herg denotes the random variable,is a  for the case of a simple diffusion process.

Fokker-Planck operatoifor diffusion processes =/ x?),
and,D! ™ is the Riemann-Liouville fractional differential op- Il. A CLASS OF NON-MARKOVIAN PROCESSES
erator(see Appendix A The properties of this equation with  The starting point of our discussion is the set of coupled
regard to physical applications have been extensively dispangevin equationg?] for the motion of a Brownian particle
cussed in the recent reviey,6]. In [7] Fogedby introduced i, an external force fiel@ in d=1 dimensiongan extension

a class of coupled Langevin equations, where he also conp, higher dimensions>1 is straightforwary

sidered a case which leads to an operatoncluding frac-

tional derivatives with respect to the varialde =%/ 9x?. A dX(s)
similar case has been studied by Meerscheed. [8], who ds

J }
—fo = DILF(x,t) (1)

=F(X) + 7(s), (2)
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dt(s) <a<l1. As a result, the procedss) is Markovian. Lévy-
“ds =s). ©) stable processes of this kind induce the property of a diverg-
ing characteristic waiting timgt(s)). Consequently the sto-

In this framework the random walk is parametrized in chastic process in physical timegiven by the coupling of
terms of the continuous path varialdewhich may be con-  the Langevin equation§?) and (3) reveals subdiffusive
sidered, e.g., as the arclength along the trajec®(s) and  pehavior. The specific form ab(t,,s,;t;,s;) will be given
t(s) denote the position and time in physical space. The ranpe|ow.
dom variables(s) and7(s) are responsible for the stochastic  For a deeper discussion we refer to the review articles
character of the process. We are only considering the case p#,4,6) where the general relation between subdiffusive be-

uncoupled jump lengths and waiting times such thaindr  havior and diverging waiting times has been treated in detail.
are statistically independeritoupled CTRW'’s have been

considered if10]). The arclength is related to physical time C. The processX(t)=X(s(t))
t by the inverse functiors=t™1(t)=s(t). Thus, we have to
assumer(s) >0. We are interested in the procexss(t)),
i.e., the behavior of the variable X as a function of physical

We are interested in the properties of the varia$heith
respect to the physical timteTherefore, we have to consider
the inverse of the stochastic procesg(s):

time t.

For the characterization of the process we introduce the s=t7i(t) = s(t). (9)
two-time probability density functions for the proces$gp . , . .
and (3): The stochastic proces{(s(t)) then is described by the joint

probability distribution

f(Xo, 125 Xq, 1) = (8(X2 = X(s,)) 8(s; — S(tp)) (%1 — X(s1)) 8(s;
Ptz S2;t1,51) = (A(tz — t(s)) Sty — t(s1))), (5 - s(ty)). (10
] _ a 3 The N-point distributions are determined in a similar way.
FXa, 211, ) = ((xp = X(S(t2))) 8lx1 = X(S(ta)))). (6) Introducing the probability distributioh for the inverse pro-
Here the bracket$ --) denote a suitable average over sto-Ccesss(t),
chastic realizations. For the sake of simplicity we restrict

ourselves ton=2. The generalization to multiple times is
obvious. Both probability functions are determined by the

f1(%2, 92 %1,81) = (8(X = X(87)) (%1 — X(s1))), (4)

h(s,t) = (d(s—s(t))),

statistics of the independent random variabjeand . h(sy,tz;s1,t) =(a(s; = s(tr)) sy = s(ty)), (1)
we can calculate the PDF of the proceds)=X(s(t)) as a
A. The processX(s) function of the physical time by eliminating the path vari-
abless:

We consider the case whetgs) is the standard Langevin
force, i.e.,n is a Wiener process. In turn ER) becomes * *
Markovian andf;(x,,S,;X,,S;) can be determined by solving (X2 t2iXa,t0) =f dslf ds,N(Sz 251, t0) Fa (X2, %1 %0,8) -
the corresponding Fokker-Planck equat{i&RE for the con- 0 0

ditional probability distributionP(x,,s,|X;,S;): (12
P P P This relationship is due to the fact that the proces€ssand
&—P(X2,52|X1,Sl) = (‘ a—F(X) + ﬁ) P(Xo,S5|X1,51) t(s) are statistically independent. In that case, the expectation
S X X values in Eq(10) factorize. Equatiori12) can be generalized
= Lep(X)P(X0,S,/X1,S1) - (7)  to N times. In fact, one may turn over to a path integral

e . . . representation:
The diffusion constant is set to 1 in the following. Due to the P

Markovian property of the procesX(s) the joint PDF is
obtained by multiplication with the single-time PDF accord- fx(®) = [ DsO(SE)F1(x(S(D))- (13
ing to
However, we do not investigate this path integral further.
f1(Xa,S2:%1,S1) = P(Xg, S[Xq, S1) f(Xq,81) - ) The probability distributiorh can be determined with the
For a general treatment of the FPE we refer the reader to t2€!P of the cumulative distribution function eft). Since the

monographs of RiskefiL1] and Gardinef12]. processt(s) has the property(for s>0) s,>s,—1(s))
>1t(s;), one has the relationship

B. The processt(s) O(s—-s(t)) =1-O(t-1t(9)). (14)

The stochastic proces) is determined by the properties Here, we have introduced the Heaviside step funcé)
of 7(s). The corresponding PDF’s are denoteddty,s) and =1 for x>0 and©(x)=0 for x<0, O(x=0)=1/2. The va-
p(t2,$,:t1,5y). Furthermore, we shall considets) to be a lidity of Eq. (14) becomes evident from an inspection of Fig.
(one-sidegl Lévy-stable process of ordet [7,13] with 0  1: The function©(s-s(t)) equals 1 in the region above the
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FIG. 1. Sketch of the procests) which relates the arclength
to physical timet. Since the increment(s) of Eq. (3) is positive,

the curvet(s) is monotonically increasing, implying the validity of

the relation(14).
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s
t(S)=f ds'7(s'), (18
0

where we assumeq(s)>0. Additionally, we consider the
characteristic function fow=iA. This defines the Laplace
transform

Z(Np,Sp;M1,8y) = L{p(ty, Sp5t1,50)}
= J dt, f dte ™22 Mhp(t,,s,0t,,5,).
0 0

(19

It will become clear below that working with Laplace trans-
forms is more convenient for manipulating the PDF’s of pro-

curvet=t(s), wherea®(t-t(s)) equals 1 in the region below c€ss(3) in the present context.

the curvet=t(s). On the curveO(s—s(t))=1/2=6(t-t(s)).

An immediate consequence is the following connection
among the cumulative distribution functions of the processes

t(s) ands(t):
(O(s-s(1)) =1 -(O(t-t(s))),

(O(s2 = s(t2))O (s~ s(ty)))
=([1-6(t - ()1 -O(t, ~t(s)) )
=1-(0(t2 - t(sp)) = (O(ty ~ t(s1)))
+(O(t ~ () Oty — t(sy)).

Simple differentiation of Eq(15) yields the probability den-
sity functionh of the process(t):

(15

h(s.) == (Ot~ t(9)),

(St sety) = éé(e(tz ()0t~ t(s)).
(16)

Furthermore, since fot=0 we have the correspondense
=0, the usual boundary conditions hold:

h(s,0) = &(s),
h(s,,1t2;51,0) = h(s,,t5) 8(sy),

h(s,,t; — ty;85,t1) = &(S, — spPh(sy,ty), (17)

and can be verified from E{16).

IIl. DETERMINATION OF THE PROBABILITY
DISTRIBUTIONS p(s,t): LEVY-STABLE PROCESSES

In the following we shall consider the joint multiple-time

PDF of the Lévy-stable proce$3) of order a. Simple inte-
gration of Eq.(3) yields

A. One-sided Lévy-stable processes: Single time

At this point we have to introduce specific properties of
the Lévy-stable process. Lévy distributiohg 4(x) are de-
fined by two parameterd14,15: a characterizes the
asymptotic behavior of the stable distribution for lasgand
hence the critical order of diverging momenfscharacter-
izes the asymmetry. In the present case0 and the distri-
bution is maximally asymmetrip(t<<0,s)=0. This leads to
B=1. In the following we denote the Lévy distribution
Las(X) for B=1 by L,(X).

Let us motivate the consideration of Lévy statistics. To
this end we consider the characteristic function, which we
write in the form

Z(\,s) :<exp(—)\sl/“sli,a Sds’7—(s’)>>, (20)
0

where « is a certain parameter. The choiZé\,s) =2()\“s)
leads to a scale invariant PO#ft,s)=1/sY*P(t/s"*) [8].
As a result, the characteristic function takes the form

Z(\,5) = e, (21)
where we assumeQa<1.
The probability distribution then becomes
1 t
p(t,s) = @L“<317') : (22)

where L ,(t) denotes the one-sided Lévy-stable distribution
whose Laplace transform B{La(t)}:e‘”a.

B. Multiple times

The joint PDF of the Lévy process) has been intro-
duced in Eq.5). Starting with this definition the derivation
of the explicit expression for the PDF is straightforward
and clearly reveals the Markovian character of this process.
The characteristic function is given as Laplace transform of
Eq. (5):
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IV. PROBABILITY DISTRIBUTION  h(s,t)

Z(\5,Sp;\1,S1) = dtf dte ™2 Mhp(t,, s, t,
(h2Sziks.s) f 2 ! e The PDF'sh(s,t),h(s;,,ty;s;,t;) of the inverse process

=s(t) can be obtained from the PDF’s of the procés$(s)

exp( )\zf ds #(s') with the help of relationship Eq16). We shall consider the
single- and multiple-time cases separately. Again, due to the

simple form of the Lévy distributions in Laplace space, we
-\ f ds n(s’ )) (23)  perform most of the calculations with Laplace transforms.
For further evaluating this expression we have to distinguish A. Single time

between the cases>s,; ands,; >s,. With a given ordering
of s,,5; we can rearrange the integrals and wi#tas a sum
of two contributions:

Using the notationﬁ(s,)\):ﬁ{h(s,t)} for the Laplace
transform ofh(s,t) with respect tot, the relation Eq.(16)

reads
S
Z(N5,S5;N1,S1) = O(S, — ex —)\f ds'7(s’' ~ d/1 J1
(A2,52iN1,S1) (s2 S1)< P( 2 . (s') h(s\) = - —( =e™MO ) =— ZZ7(s)). (28)
JS\ \ JS\
S
— (N + )\z)f ' ds 7—(3’)) +0(s, - Sy) The derivative with respect teis easily performed with
0 Eg. (21) and leads to the solutiom(s,\):
52 -~ a
X <exp<— Mj ds' 7(s') h(s,\) = \@ 1™\, (29
* This expression has already been derived7ih—however,
& without giving a “simple physical argument.” Here the deri-
- (MH\Z)L ds'e(s) | ). (24 vation is clearly based on El4) which relates the Lévy-

stable process and its inverse.

Here the expectation values factorize due to statistical inde- The inverse Laplace transform of EQ9) is known and
pendence of the incrementsind can be expressed accordinghas been calculated [116]:

to Eq.(21):
1t t
ZNgS2ihy,8) = O(, ~ )@ 1M A gz hso= ;@L“(sﬂ> ' (50

+O(s, — 5p)e M+ A g (e Moreover, in[17] the single-time distributioh(s,t) has been
(25) identified as the Mittag-Leffler distribution:

This is the characteristic function of the Lévy process for (—st)n
multiple times. The appearance of the exponénis-\,)¢ is h(st) =2 = ——— I'(1+na)’ (31)
characteristic in this context and carries over to the PDF of =0
the inverse process. We obtain the PP(§,,t,;s,,t;) after Here we have obtained the PDF sif) for single times.
performing the inverse Laplace transform of E85). The  Therefore, a complete characterization of the inverse process
result is is given in this case.
1 t-t 1 However, in order to derive an evolution equation for the
. = - 1 PDF of the procesX(s(t)) we require an equation that de-
Ptz 2it.%) = O(52 = ) (Sz—Sl)UaLa( (s 51)1/“> e terminesh(s, t).

ty 1 From Eqg.(29) it is evident thaiﬁ(s,)\) obeys the differ-
XLa sl +0(s; - 5) (5= st ential equation
t,—t, 1 ty _d= N
gl g) e g SN NN %

This expression explicitly exhibits the Markovian nature ofwith the initial condition h(0,\)=\*"1 for s=0. Hence,
the process. The conditional PIft,,s,|t;,s;) for s,>s;is  Laplace inversion yields a fractional evolution equation for
just h(s,t):

1 . ( t,—t,
(s=s)M* "\ (s, = st

We remind the reader that,(x)=0 for negative values of. ~ The operatopD; ™ denotes the Riemann-Liouville fractional
The expression for the joint PDF for multiple points is differential operator, a possible generalization of integer or-
obvious. der differentiation and integration to fractional ordésee

Ptz Solts, ) = ) . (@7 —h(S )=~ h(S t). (33
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Appendix B. For a discussion of fractional derivatives we  As a result we have obtained the Laplace transform of the
refer the reader t618]. joint PDF h(s,,t,;5;,t;). Unfortunately, a closed form of the
inverse Laplace transform could not be calculated. The given

B. Multiple times .~ . . .
P solutionh can be readily used, however, to derive meaning-

The statistical characterization of the prOCd$$f0r mul- ful expressions that characterize the inverse pros@&
tiple times has been investigated from a mathematical point
of view in the work of Binghan{17] already in 1971. He 1. Moments of the inverse process

?SE(}::;?Q‘S(E:;_ following - relationships for the moments In order to ol_atain further information about the process
' s(t) for multiple times we calculate the moments of the PDF.
N Let us first demonstrate how this can be achieved for the
m(s(tN)“'S(tl» simple case(s(t;)s(t,)). This moment is defined from the
PDF h(s,,t5;5,t1) as

1
= W[tl(tz —ty) - (ty—tnoD)]*h (34) * *

a (stys(tx)) = | ds; [ dssisph(syty;syt)
This equation can be obtained from the previous relation 0 0

(16), which implies the following relationship between the (7 ” ~ '
probability densitie(t,s) andh(s,1): =L . ds; . d$515N(S, N 2581,M)
(39)

where the last step follows by interchanging inverse Laplace

transform and integration. The integrations with respect to
h(S)t,:S;.t,) = £S5 t.S;), $1,S, can be simply performed with the help of expression
aty dt, (S tisy ) aszﬁslp(zsz 18 Eg. (36). The result is

d d
—h(s,t) = - —p(t
p (s,t) asp( ,S),

ﬁN Jscd food . E ,)\ ;S,)\
Tt et isut) L 05 ] dmeh(sais )
1 N

=( )0SN”_&Slp(tN:5N-"'1t1:51)- (35 A, A

In the following we shall derive explicit expressions for Now_the inverse Laplace transfor_m leads to an analytical
these moments and show that instead3d fractional equa- ~ Solution for(s(t,)s(tz)) (see Appendix B
tions can be used for their determination. Based on BEd. 1 1
and (25) the derivation of an expression for the Laplace (S(tl)s(t2)>=€)(t2—t1){ 2% +

- 2 .
transformh(s,, \; $1,\1) == £{h(s;,t5; 51, 11)} is obtained in a [2a+1) " Tla+l)

way analogous to the single-time case. wa . b B
We start by considering E¢16) in Laplace space: X4 e - aiat l’t2 +0(t -1

~ Jd o9/ 1 1 1 1

h(sp,Ap;81,0p) = — ——( —eal(® =gty X t§“ + Stits
(951 &Sz )\2 )\1 F(Zaf + 1) F(Cll + 1)
d d 1 tz)

=————Z(\2,%;\1,51). 36 XFla,—a,a+1;=] (. 40

31 95 A1\ (h2r%ihe,s) (36) (a o ty } 40

Using Eq. (25 we can perform the derivatives of HereF(a,b;c;z) denotes the hypergeometric functitsee,
Z(\2,52;\1,81) With respect tos;, ;! e.g., Chap. 15 ifi19)).
One notices that in the limit, — t; expression40) agrees

h(SpN0iSp, M) = 8(S, - 31))‘1 — ()‘1)\+)\)‘2)a A s+ with the second momengs(t)?):
12
o’} N 2
AL+ A% = NS sty =L f AN dsp = ——t%*, (41
+9(32—Sl)( 21+ X)) = A7] (st { . [2a+1) (41)
ANy
O _ where Eq.(29) has been used. The simple single time mo-
xeg T hl e+ O(s, - 5y) ment(s(t)) is given as(s(t))=L£ Y\ =[1/I(a+1)t*].
DI+ N)* =] The calculation of higher order moments essentially fol-
" lows the same steps.

. Furthermore, we introduce the operafér ot, +d/ dt,) 1™

X @ M A e A (5175) (37)  in the sense of the single-time Riemann-Liouville fractional
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differential ~ operator:  L{(d/ gty +3/ dty) gty t) =\ The nth-order generalization reads
+X)"“G(N1,\,) (see Appendix A An explicit expression in A
terms of an integral reads (s(t)) =n1 D 4s(t)). (50

P 9\ This equation can also be derived directly frdits,\).
(I + E) g(ty,tp) Thus one can obtain a complete characterization of the pro-
o2 cesss(t) based on Eq(37) or Eq.(36), respectively. Below,
1 (Mt , , we shall show how to obtain these results on the basis
= Ta)fo drt gt -t to-t). (42 o an evolution equation for the multipoint PDF

h(slitl1 e 1SN!tN)
Using this fractional differential operator, we are in the .

position to write down a simple recursion relation for arbi- 2. The structure 9f the N-time PDF
trary moments of({s;,t;}). The second moment E¢39) From Eq.(16) one can derive the general form of the PDF
reads h of the inverse procesxt). The two-time PDF readéere
5 5 \-e we assume the casg>s,; for simplicity)
(s(ty)s(ty) = (; + 5) {(s(ty) + (st} (43) 0o (o (e ,

1 2 h(sytaispt) =———— | dty| dip(t;—ty,5 = s)p(ty,s)

0

. . 98195, J¢
This immediately leads towe assume,>t;)

- rd (9 tl ! ! !
(s(tp)s(ty)) = [thla{<S(t2 )+ <S(t1)>}]T L 49 =- _f dtih(s; = st —typ(ty,s). (51
17 9o
The explicit expression allows one to obtain the fusion rule  \ye gefine
1 (v S to—t S — St —
lim (s(tp)s(ty) = (s(ty? = 2= |~ dtt sty ~t)) g~ sz~ tis =St =)
tyoty I'e) J, P
— =—— | dtth(s,— s, t, —t)p(t; —t5,S — Sp).
= 2,D;; s(ty). (45) 3S1fo (s = st~ t)p(t; — 10,51~ o
The calculation of the third-order mome(stt;)s(t,)s(ts)) (52)
along the same lines yields the result The form of the three-time PDF is obtained in the same
9 9 o\ way and reads fog;>s,>s;
(s(tys(t)s(ts)) = s + s + T {(s(tys(tz)) g 9 (u t
v h(Satai S, toiS1,ty) = Ea_f dtif dtzh(s; — sp.t3
+(s(tys(tz)) + (s(tr)s(ta))} (46) 19%2)0 0
The third moment is obtained via fractional integration of the - t)p(ty -t - s)p(ty,s)  (53)

sum of second-or.der moments. I the ggneral gase’.tr\ﬁith a straightforward extension to the general case.
nth-order moment is calculated by fractional integration with With the help of Eq.(52) this expression can be repre-

respect ton times the sum of all permutations of-1 order sented according to
moments.

Due to the representation of the fractional operator g (1 ,
h(%vts?szvtzi%tl):‘g dtH(ss = Spts =t = sty
1J0

J 0 J e l min(tl,tz,tg) ~
(— +—+ —) 9ty toty) = mj dt't’*g(t,
0

gty dty,  dtg —-t)p(ty,s0). (59
-t -t t3-t), (47) Recursively, we may define higher order functions
we can derive the fusion rule HN(sy = Sy-oth = ta-1s 5t~ 10,51~ So)
t ty
. 1 1 — J gN-1 . .
lim (s(tg)s(ty)s(ty)) = —— f dt't’ Y(s(t; - t')s(t; - t')) == f dtH  (sy = Sv-ntn— -1 i =St
t3—>t1+0 F(a) 0 asl 0
+ 2(s(t, — t')s(ty — t'))} —t)p(t; — to,S1,S0)- (55)
= oD {(s(ty)s(ty) The integrals cannot simply be evaluated and the relations
' ~ are formal. However, they show the underlying mathematical
+ 2<s(t2—tl+t1)s(t1)>};1:t1. (48) structure of the statistical description of the inverse process

s(t).

The fusiont,—t; leads to

3\ — —a 2\ — —a—a — -2«
(8(t2)%) = 3Dy (8(t)%) = 6D, "Dy ((10)) = 6Dy (S(t)) In analogy to the single-time case, where we have speci-
(49) fied a fractional differential equation fdr(s,t), we now es-

3. Fractional evolution equation
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tablish an evolution equation fdi(s,,t,;s;,t;). N Nog\t
From Eq.(37) it is evident that the following equation E (slty) sty =| X = | {(s(ty-y) -~ s(ty))
holds: i=1 It i=1 ot
+ permutations (60)
Jd ~
(5_ + a—)h(sz 2SN 1) == (N + No)*h(Sp, N5, ) These equations are equivalent to the chain of equatith)s
S1 9% obtained by a direct inspection of the PDF’s.
56
(56) V. TWO-TIME MOMENTS OF THE DIFFUSION PROCESS
with initial conditions In this last section we focus on the usual diffusion pro-
cess, i.e., we consider the Fokker-Planck operator
= A= (AN +A) NS
ANy L=—. (61)
X
_ (D[ + )%= \S] In this case, the moments are polynomialsiand we may
h(Sp\2;0,\p) = —2 l)\ )\2 g%, directly use the results of the preceding section:
12
(X(s)x(s1)) = O(s, = 51)81 + O(31 ~ S),. (62
~ A Os + o) — & The corresponding moment with respect to time given by
h(0,7\2§51,}\1)=( I l}\ )\2) ] RN (57)
12

X(t)x(ty) = f f ds,d,N(sy, t2; 5, ) (X(S)X(S))-
A common way to solve first-order partial differential equa- 070
tions is the method of characteristics. Applying this method (63)
to Eq.(56) with the given initial condition for each case, one
obtains the correct expressions Eg7). Therefore Eq(56)
determines the PDF in Laplace space.

The integrations can be performed by inserting the PDif
Laplace space:

Consequently, upon performing the inverse Laplace trans- (N A1+ Ao) g+ A%
form, we derive thah(s,,t,;s;,t;) obeys the fractional evo- L{LX(t)x(t)} = . dS s eMth
lution equation 0
1
- = (64)
( J )h(Sz to;s,ty) = ( J +i>1 (i (A1 +X2) NNz
atl It I I 98, The inverse transform leads to the result
Jd
+— |h(spty;81,ty), (58 1 a
(?s) (bt (59 (1) = (Ol =t + O, - )t}
where the fractional differential operat@s/dt,+a/ dt,) ™ =G(tz—tl)<5(t1)>+9(t1—tz)<8(tz)>- (65)

has been defined according t@/dt;+dl dty)  *F(t,,t;)
= (9] gty + 3l dty) (9l aty +dl t,)"“F(t,,t1). The appearance of
fractional time derivatives in Eq(58) reveals the non- (X(5)X(51)%) = 5,5, + 20(s, — 5,)S% + 20(S, — S,)S5.
Markovian character of the stochastic proced$ and as a (66)
consequence of the coupled proc&$s(t)).

The extension of the above result notimes is straight-  This yields

Similarly, we may calculate the momegx(t,)?x(t;)?):

forward: (X(t)X(1)%) = (s(t)S(ty)) + 20t = ty)(s(t)?)
N Nog N\ N, +20(t; — tr)(s(tp)?). (67)
% P h({s.t}) = 21 (?_t|> IE; P h({s,t}). For the evaluation ofx(s,)2™x(s;)2") we may use the prop-

erties of the moments of Gaussian processes which read for
59 =

Again we want to emphasize that this single evolution equa- (X(3,)°™x(s))?" = AS)'S] + BO(s, - 58] 'Sy

tion with the proper initial condition sufficiently describes _ ——

the PDF for multiple times. +BO(s,~ )5, S] (68)

The above equation may also be used to calculate thghe coefficientsA,B,C can be evaluated by an application
moments(s(ty)- - -s(t;)), which already have been specified of Wick’s theorem for Gaussian processes.
above. The fractional evolution equati0) implies the fol- The corresponding expression for the proc$s be-
lowing relationship among the momer&ty)- - - s(ty)): comes accordingly
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(X(t2)"™(t1)*") = A(s(t) Ms(ty)") + BO(t, — ty)(s(ty) " "s(t)™ Drg(t) = — f Cogt) ot = — L gt
+BO(t; ~ L)(s(t) " s(t) ™). (69) o (@ Jo (=t T(a) |
The calculation of the expectation valugét,)?™s(t;)?") has (A1)
been discussed above. Here = denotes a Laplace convolution. Consequently, per-
forming the Laplace transformation is straightforward and
VI. CONCLUSION yields the well-known result
Up to now the discussion of continuous time random E{OD{“g(t)}=>\‘”@()\). (A2)

walks and the corresponding fractional kinetic equations has

been focused on single-time probability distributions only.From Eq.(Al) the Riemann-Liouville fractional differential
On the basis of this PDF the scaling behavior of moment®perator is obtained by simple partial derivation:

has been compared with experiments. However, more infor- P

mation has to be used in order to assign a definite stochastic oD g(t) == —,D; “g(t). (A3)
process to a non-Markovian process. To this end we have at

considered multiple-time PDF for a certain class of stochas- The extension of the fractional differential operator to two

tic processes. ) timest;,t, is now obtained in a way analogous to the steps
Our approach is based on the framework of coupledypgye.

Langevin equations2) and (3) devised by Fogedby as a  First we define the fractional integral operator of two
realization of a continuous time random walk. Here, the SOtjmes in Laplace space:
lution for the N-time PDF’s are given as an integral trans-
form of the PDF’s of an accompanying Markovian process. J i)_a - —or=
We have shown that the non-Markovian character of this E{(atl T, g(tl’tz)} = (e # A TG A,
process can be traced back to the properties of the inverse (Ad)
Lévy-stable process.

The next step would be to compare these theoretical pre- Furthermore the following equation holds:
dictions with the behavior of physical systems which reveal

subdiffusive behavior. To our knowledge multiple-time sta- f dt, f dte” )\ltl_>‘2t2itg_l5(t2—tl)

tistics of such systems have not yet been investigated experi- 0 0 INE

mentally. This would be of considerable interest. We may w 1

expect that in some cases the consideration of multiple-time = f dte it =T = (\; +\) % (AB)
statistics may lead to a more precise characterization of the 0 ['(a)

underlying stochastic process.
It is well known that for the single-time case a fractional
diffusion equation can be derived, which determines the PD

In physical time the fractional integral operator can thus
Il_;)e considered as an expression containing a twofold Laplace

f(x,1) convolution with respect tt, andt,, denoted withy::
g 9\ 1 .,
- —+— ty,ty) = ——t§ 1t — ty) * gty t
f(X,t)=f ds Hs,t)f;(x,9), (70) (atl at) olte.tz) [(a)? (t2=ty) * * g(taty)
’ 1 g ’ 2 ryra=1
as a solution of = Ff dt1J det’y
a)Jo 0
(9 ! ! ! !
5f(x,t):0Dt1_“Lpr(x,t). (71) X 8(tht)g(t, —th,t; —t7).  (AB)

) ] o ) Here we can distinguish between the casest; andt,
We would like to mention that a similar equation can be~t, which results in Eq(47). The fractional differential op-

be discussed in a future publication. The present article is a

ing poi inle-ti : g d\ AT AS
starting point for the investigation of multiple-time PDF'’s of <_+_) g(ty,ty) :=< + )( + ) gty ty).

the coupled Langevin equations of Fogedby. ity at, a_tl a_t2 a_tl a_tz

(A7)
In the generaN-time case the fractional integral operator

We gratefully acknowledge support by the Deutscheigkes the form of amN-fold convolution
Forschungsgemeinschaft and wish to thank R. Hillerbrand,
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O. Kamps, and T. D. Frank for helpful discussions. g\ 1 ..
2 20| Ot ) = Fati o~ ) A
APPENDIX A: FRACTIONAL DIFFERENTIAL OPERATOR =1
The Riemann-Liouville fractional integral is defined as a T gt (A8)
generalization of the Cauchy formula to real orders with Laplace transform
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1)\N)-

N -a N @
L <2 i) gty ..., ty) [ = (E )\i) I\, ..
i=1

i=1 t;
(A9)

APPENDIX B: CALCULATION OF MOMENTS

Using the results of the previous section we can explicitly

write the second-order moment Eg3) as convolution inte-
grals:

1 t tp 1
(sttysitg) = o fo dy; fo dtét'i"la(té—tD{—F(a+1)“1

1
-t ——— (L, —t)* (. B1
Dt rarn® 2>} (B1)
If we distinguish between the casgs>t; andt;>t, in
order to perform the integrations, we obtain

PHYSICAL REVIEW E 71, 026101(2005

(s(tys(ty)) = O(t, — ty) e

I'Ca+1)

1 h N
————— |ttt -t)e
+r<a>r<a+1)fo et

+O(t -ty T t5°

[(2a+1)
1 ? r4ra=1 rYAYY
+F(a)F(a+1)Jo dt't’“(t —-t)* (.
(B2)

The integrals can be performed witmpPLE and lead to
the hypergeometric functioR(a,b;c;z):

" -1 ’ 1 aza tl
e, - t')7 = ~titsF| @y - asa+ 1;2 ). (B3)
0 @ t
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