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We consider joint probability distributions for the class of coupled Langevin equations introduced by
FogedbyfH. C. Fogedby, Phys. Rev. E50, 1657s1994dg. We generalize well-known results for the single-time
probability distributions to the case ofN-time joint probability distributions. It is shown that these probability
distribution functions can be obtained by an integral transform from distributions of a Markovian process. The
integral kernel obeys a partial differential equation with fractional time derivatives reflecting the non-
Markovian character of the process.
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I. INTRODUCTION

In recent years, the connections between the continuous
time random walksCTRWd, which originated in the work of
Montroll and Weissf1g, generalizing the idea of Brownian
random walks, and fractional Fokker-Planck equations have
been established. For a review we refer the reader tof2g. The
solutions of these equations exhibit both super- and subdif-
fusive behavior and are thus appropriate models for a large
variety of transport processes in complex systemsf3g. Re-
cently, a connection between the velocity increment statistics
of a Lagrangian tracer particle in fully developed turbulent
flows and a type of CTRW has been introducedf4g. Here, a
closure assumption on a hierarchy of joint velocity-position
probability distribution functionssPDF’sd derived from a sta-
tistical formulation of the Navier-Stokes equation leads to a
generalization of Obukhov’s random walk modelf5g in terms
of a continous time random walk. It allows for a successful
parametrization of the single-time probability distributions of
velocity increments. However, there are different suggestions
for the stochastic process of Lagrangian particles in turbu-
lence, which are able to provide reasonable approximations
for the single-time velocity increment statistics. This ex-
ample evidences that one has to introduce further quantities
in order to distinguish between different stochastic models.

For non-Markovian processes, the natural extension is the
consideration ofN-time joint probability distributions. It
seems that for the class of CTRW’s only single-time prob-
ability distributions have been investigated so far. In that
case fractional diffusion equations of the form

]

]t
fsx,td = 0Dt

1−aLfsx,td s1d

can be derived. Herex denotes the random variable,L is a
Fokker-Planck operatorsfor diffusion processesL=]2/]x2d,
and0Dt

1−a is the Riemann-Liouville fractional differential op-
eratorssee Appendix Ad. The properties of this equation with
regard to physical applications have been extensively dis-
cussed in the recent reviewsf2,6g. In f7g Fogedby introduced
a class of coupled Langevin equations, where he also con-
sidered a case which leads to an operatorL including frac-
tional derivatives with respect to the variablex, L=]b /]xb. A
similar case has been studied by Meerschaertet al. f8g, who

made an extension to several dimensions introducing a mul-
tidimensional generalization of fractional diffusion, so-called
operator Lévy motion. This allows for a description of
anomalous diffusion with direction-dependent Hurst indices
Hi defined by the relationkfxistd−xist=0dg2l< t2Hi. In f9g
limit theorems of a class of continuous time random walks
with infinite mean waiting times have been investigated. It is
shown that the limit process obeys a fractional Cauchy prob-
lem. The emphasis again is put on single-time distributions.

The purpose of the present paper is to investigate
multiple-time probability distribution functions for the class
of coupled Langevin equations introduced by Fogedbyf7g,
which have been considered to be a representation of a con-
tinuous time random walk.

The paper is outlined as follows. In the next section we
present the coupled Langevin equations considered by
Fogedbyf7g consisting of a usual Langevin processXssd in a
coordinates and a Lévy process representing a stochastic
relation tssd. One is interested in the processXstd=X(s−1std).
Fogedbyf7g investigated the case where the processesXssd
and tssd are statistically independent and showed how frac-
tional diffusion equations of the forms1d arise. Interesting
results for the case where the processes are statistically de-
pendent have been considered by Becker-Kernet al. f10g
leading to generalizations of the fractional diffusion equa-
tions s1d. However, both publications are devoted to single-
time probability distributions.

In Sec. II we present a central formula, which relates the
N-time probability distributions ofXstd to the PDF’s ofXssd
via an integral transform, which is determined by the process
tssd. In Sec. III properties of the involved Lévy-stable pro-
cesssstd are considered, leading to expressions for the PDF
of the inverse processsstd. In Sec. V we specify the moments
for the case of a simple diffusion process.

II. A CLASS OF NON-MARKOVIAN PROCESSES

The starting point of our discussion is the set of coupled
Langevin equationsf7g for the motion of a Brownian particle
in an external force fieldF in d=1 dimensionssan extension
to higher dimensionsd.1 is straightforwardd:

dXssd
ds

= FsXd + hssd, s2d
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dtssd
ds

= tssd. s3d

In this framework the random walk is parametrized in
terms of the continuous path variables, which may be con-
sidered, e.g., as the arclength along the trajectory.Xssd and
tssd denote the position and time in physical space. The ran-
dom variableshssd andtssd are responsible for the stochastic
character of the process. We are only considering the case of
uncoupled jump lengths and waiting times such thath andt
are statistically independentscoupled CTRW’s have been
considered inf10gd. The arclength is related to physical time
t by the inverse functions= t−1std=sstd. Thus, we have to
assumetssd.0. We are interested in the processX(sstd),
i.e., the behavior of the variable X as a function of physical
time t.

For the characterization of the process we introduce the
two-time probability density functions for the processess2d
and s3d:

f1sx2,s2;x1,s1d = kd„x2 − Xss2d…d„x1 − Xss1d…l, s4d

pst2,s2;t1,s1d = kd„t2 − tss2d…d„t1 − tss1d…l, s5d

fsx2,t2;x1,t1d = kdsx2 − X„sst2d…ddsx1 − X„sst1d…dl. s6d

Here the bracketsk¯l denote a suitable average over sto-
chastic realizations. For the sake of simplicity we restrict
ourselves ton=2. The generalization to multiple times is
obvious. Both probability functions are determined by the
statistics of the independent random variablesh andt.

A. The processX„s…

We consider the case wherehssd is the standard Langevin
force, i.e.,h is a Wiener process. In turn Eq.s2d becomes
Markovian andf1sx2,s2;x1,s1d can be determined by solving
the corresponding Fokker-Planck equationsFPEd for the con-
ditional probability distributionPsx2,s2ux1,s1d:

]

]s
Psx2,s2ux1,s1d = S−

]

]x
Fsxd +

]2

]x2DPsx2,s2ux1,s1d

= LFPsxdPsx2,s2ux1,s1d. s7d

The diffusion constant is set to 1 in the following. Due to the
Markovian property of the processXssd the joint PDF is
obtained by multiplication with the single-time PDF accord-
ing to

f1sx2,s2;x1,s1d = Psx2,s2ux1,s1dfsx1,s1d. s8d

For a general treatment of the FPE we refer the reader to the
monographs of Riskenf11g and Gardinerf12g.

B. The processt„s…

The stochastic processtssd is determined by the properties
of tssd. The corresponding PDF’s are denoted bypst ,sd and
pst2,s2; t1,s1d. Furthermore, we shall considertssd to be a
sone-sidedd Lévy-stable process of ordera f7,13g with 0

,a,1. As a result, the processtssd is Markovian. Lévy-
stable processes of this kind induce the property of a diverg-
ing characteristic waiting timektssdl. Consequently the sto-
chastic process in physical timet, given by the coupling of
the Langevin equationss2d and s3d reveals subdiffusive
behavior. The specific form ofpst2,s2; t1,s1d will be given
below.

For a deeper discussion we refer to the review articles
f2,4,6g where the general relation between subdiffusive be-
havior and diverging waiting times has been treated in detail.

C. The processX„t…=X(s„t…)

We are interested in the properties of the variableX with
respect to the physical timet. Therefore, we have to consider
the inverse of the stochastic processt= tssd:

s= t−1std = sstd. s9d

The stochastic processX(sstd) then is described by the joint
probability distribution

fsx2,t2;x1,t1d = kd„x2 − Xss2d…d„s2 − sst2d…d„x1 − Xss1d…d„s1

− sst1d…l. s10d

The N-point distributions are determined in a similar way.
Introducing the probability distributionh for the inverse pro-
cesssstd,

hss,td = kd„s− sstd…l,

hss2,t2;s1,t1d = kd„s2 − sst2d…d„s1 − sst1d…l, s11d

we can calculate the PDF of the processXstd=X(sstd) as a
function of the physical time by eliminating the path vari-
ablessi:

fsx2,t2;x1,t1d =E
0

`

ds1E
0

`

ds2hss2,t2;s1,t1df1sx2,s2;x1,s1d.

s12d

This relationship is due to the fact that the processesXssd and
tssd are statistically independent. In that case, the expectation
values in Eq.s10d factorize. Equations12d can be generalized
to N times. In fact, one may turn over to a path integral
representation:

fsxstdd =E Dsstdh„sstd…f1sx„sstd…d. s13d

However, we do not investigate this path integral further.
The probability distributionh can be determined with the

help of the cumulative distribution function ofsstd. Since the
process tssd has the propertysfor s.0d s2.s1→ tss2d
. tss1d, one has the relationship

U„s− sstd… = 1 −U„t − tssd…. s14d

Here, we have introduced the Heaviside step functionUsxd
=1 for x.0 andUsxd=0 for x,0, Usx=0d=1/2. The va-
lidity of Eq. s14d becomes evident from an inspection of Fig.
1: The functionU(s−sstd) equals 1 in the region above the
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curvet= tssd, whereasU(t− tssd) equals 1 in the region below
the curvet= tssd. On the curveU(s−sstd)=1/2=U(t− tssd).

An immediate consequence is the following connection
among the cumulative distribution functions of the processes
tssd andsstd:

kU„s− sstd…l = 1 − kU„t − tssd…l,

kU„s2 − sst2d…U„s1 − sst1d…l

= kf1 − U„t2 − tss2d…gf1 − U„t1 − tss1d…gl

= 1 − kU„t2 − tss2d…l − kU„t1 − tss1d…l

+ kU„t2 − tss2d…U„t1 − tss1d…l. s15d

Simple differentiation of Eq.s15d yields the probability den-
sity functionh of the processsstd:

hss,td = −
]

]s
kU„t − tssd…l,

hss2,t2;s1,t1d =
]

]s1

]

]s2
kU„t2 − tss2d…U„t1 − tss1d…l.

s16d

Furthermore, since fort=0 we have the correspondences
=0, the usual boundary conditions hold:

hss,0d = dssd,

hss2,t2;s1,0d = hss2,t2ddss1d,

hss2,t2 → t1;s1,t1d = dss2 − s1dhss1,t1d, s17d

and can be verified from Eq.s16d.

III. DETERMINATION OF THE PROBABILITY
DISTRIBUTIONS p„s,t…: LÉVY-STABLE PROCESSES

In the following we shall consider the joint multiple-time
PDF of the Lévy-stable processs3d of ordera. Simple inte-
gration of Eq.s3d yields

tssid =E
0

si

ds8tss8d, s18d

where we assumetssd.0. Additionally, we consider the
characteristic function forv= il. This defines the Laplace
transform

Zsl2,s2;l1,s1d ª Lhpst2,s2;t1,s1dj

=E
0

`

dt2E
0

`

dt1e
−l2t2−l1t1pst2,s2;t1,s1d.

s19d

It will become clear below that working with Laplace trans-
forms is more convenient for manipulating the PDF’s of pro-
cesss3d in the present context.

A. One-sided Lévy-stable processes: Single time

At this point we have to introduce specific properties of
the Lévy-stable process. Lévy distributionsLa,bsxd are de-
fined by two parametersf14,15g: a characterizes the
asymptotic behavior of the stable distribution for largex and
hence the critical order of diverging moments.b character-
izes the asymmetry. In the present caset.0 and the distri-
bution is maximally asymmetricpst,0,sd=0. This leads to
b=1. In the following we denote the Lévy distribution
La,bsxd for b=1 by Lasxd.

Let us motivate the consideration of Lévy statistics. To
this end we consider the characteristic function, which we
write in the form

Zsl,sd =KexpS− ls1/a 1

s1/aE
0

s

ds8tss8dDL , s20d

wherea is a certain parameter. The choiceZsl ,sd=Z̃slasd
leads to a scale invariant PDFpst ,sd=1/s1/aPst /s1/ad f8g.

As a result, the characteristic function takes the form

Zsl,sd = e−las, s21d

where we assume 0,a,1.
The probability distribution then becomes

pst,sd =
1

s1/aLaS t

s1/aD , s22d

where Lastd denotes the one-sided Lévy-stable distribution

whose Laplace transform isLhLastdj=e−la
.

B. Multiple times

The joint PDF of the Lévy processtssd has been intro-
duced in Eq.s5d. Starting with this definition the derivation
of the explicit expression for the PDF is straightforward
and clearly reveals the Markovian character of this process.
The characteristic function is given as Laplace transform of
Eq. s5d:

FIG. 1. Sketch of the processtssd which relates the arclengths
to physical timet. Since the incrementtssd of Eq. s3d is positive,
the curvetssd is monotonically increasing, implying the validity of
the relations14d.
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Zsl2,s2;l1,s1d =E
0

`

dt2E
0

`

dt1e
−l2t2−l1t1pst2,s2;t1,s1d

=KexpS− l2E
0

s2

ds8tss8d

− l1E
0

s1

ds8tss8dDL . s23d

For further evaluating this expression we have to distinguish
between the casess2.s1 ands1.s2. With a given ordering
of s2,s1 we can rearrange the integrals and writeZ as a sum
of two contributions:

Zsl2,s2;l1,s1d = Uss2 − s1dKexpS− l2E
s1

s2

ds8tss8d

− sl1 + l2dE
0

s1

ds8tss8dDL + Uss1 − s2d

3KexpS− l1E
s2

s2

ds8tss8d

− sl1 + l2dE
0

s2

ds8tss8dDL . s24d

Here the expectation values factorize due to statistical inde-
pendence of the incrementst and can be expressed according
to Eq. s21d:

Zsl2,s2;l1,s1d = Uss2 − s1de−s1sl1 + l2da
e−ss2−s1dl2

a

+ Uss1 − s2de−s2sl1 + l2da
e−ss1−s2dl1

a
.

s25d

This is the characteristic function of the Lévy process for
multiple times. The appearance of the exponentssl1+l2da is
characteristic in this context and carries over to the PDF of
the inverse process. We obtain the PDFpss2,t2;s1,t1d after
performing the inverse Laplace transform of Eq.s25d. The
result is

pst2,s2;t1,s1d = Uss2 − s1d
1

ss2 − s1d1/aLaS t2 − t1
ss2 − s1d1/aD 1

s1
1/a

3LaS t1
s1

1/aD + Uss1 − s2d
1

ss1 − s2d1/a

3LaS t1 − t2
ss1 − s2d1/aD 1

s2
1/aLaS t2

s2
1/aD . s26d

This expression explicitly exhibits the Markovian nature of
the process. The conditional PDFpst2,s2u t1,s1d for s2.s1 is
just

pst2,s2ut1,s1d =
1

ss2 − s1d1/aLaS t2 − t1
ss2 − s1d1/aD . s27d

We remind the reader thatLasxd=0 for negative values ofx.
The expression for the joint PDF for multiple points is
obvious.

IV. PROBABILITY DISTRIBUTION h„s,t…

The PDF’shss,td ,hss2,t2;s1,t1d of the inverse processs
=sstd can be obtained from the PDF’s of the processt= tssd
with the help of relationship Eq.s16d. We shall consider the
single- and multiple-time cases separately. Again, due to the
simple form of the Lévy distributions in Laplace space, we
perform most of the calculations with Laplace transforms.

A. Single time

Using the notationh̃ss,ld=Lhhss,tdj for the Laplace
transform ofhss,td with respect tot, the relation Eq.s16d
reads

h̃ss,ld = −
]

]s
K 1

l
e−ltssdL = −

]

]s

1

l
Zss,ld. s28d

The derivative with respect tos is easily performed with

Eq. s21d and leads to the solutionh̃ss,ld:

h̃ss,ld = la−1e−sla
. s29d

This expression has already been derived inf7g—however,
without giving a “simple physical argument.” Here the deri-
vation is clearly based on Eq.s14d which relates the Lévy-
stable process and its inverse.

The inverse Laplace transform of Eq.s29d is known and
has been calculated inf16g:

hss,td =
1

a

t

s1+1/aLaS t

s1/aD . s30d

Moreover, inf17g the single-time distributionhss,td has been
identified as the Mittag-Leffler distribution:

hss,td = o
n=0

`
s− stadn

Gs1 + nad
. s31d

Here we have obtained the PDF ofsstd for single times.
Therefore, a complete characterization of the inverse process
is given in this case.

However, in order to derive an evolution equation for the
PDF of the processX(sstd) we require an equation that de-
termineshss,td.

From Eq.s29d it is evident thath̃ss,ld obeys the differ-
ential equation

−
]

]s
h̃ss,ld = lah̃ss,ld s32d

with the initial condition h̃s0,ld=la−1 for s=0. Hence,
Laplace inversion yields a fractional evolution equation for
hss,td:

]

]t
hss,td = − 0Dt

1−a ]

]s
hss,td. s33d

The operator0Dt
1−a denotes the Riemann-Liouville fractional

differential operator, a possible generalization of integer or-
der differentiation and integration to fractional ordersssee
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Appendix Bd. For a discussion of fractional derivatives we
refer the reader tof18g.

B. Multiple times

The statistical characterization of the processsstd for mul-
tiple times has been investigated from a mathematical point
of view in the work of Binghamf17g already in 1971. He
derived the following relationships for the moments
ksstNd¯sst1dl:

]N

]t1… ] tN
ksstNd ¯ sst1dl

=
1

GsadNft1st2 − t1d ¯ stN − tN−1dga−1. s34d

This equation can be obtained from the previous relation
s16d, which implies the following relationship between the
probability densitiespst ,sd andhss,td:

]

]t
hss,td = −

]

]s
pst,sd,

]2

]t1 ] t2
hss2,t2;s1,t2d =

]2

]s2 ] s1
pst2,s2;t1,s1d,

]N

]t1 ¯ ]tN
hssN,tN; ¯ ;s1,t2d

= s− 1dN ]N

]sN ¯ ]s1
pstN,sN; ¯ ;t1,s1d. s35d

In the following we shall derive explicit expressions for
these moments and show that instead ofs34d fractional equa-
tions can be used for their determination. Based on Eqs.s16d
and s25d the derivation of an expression for the Laplace

transformh̃ss2,l2;s1,l1dªLhhss2,t2;s1,t1dj is obtained in a
way analogous to the single-time case.

We start by considering Eq.s16d in Laplace space:

h̃ss2,l2;s1,l1d =
]

]s1

]

]s2
K 1

l2
e−l2tss2d 1

l1
e−l1tss1dL

=
]

]s1

]

]s2

1

l1l2
Zsl2,s2;l1,s1d. s36d

Using Eq. s25d we can perform the derivatives of
Zsl2,s2;l1,s1d with respect tos1,s2:

h̃ss2,l2;s1,l1d = dss2 − s1d
l1

a − sl1 + l2da + l2
a

l1l2
e−s1sl1 + l2da

+ Uss2 − s1d
sl2

adfsl1 + l2da − l2
ag

l1l2

3e−sl1 + l2das1e−l2
ass2−s1d + Uss1 − s2d

3
sl1

adfsl1 + l2da − l1
ag

l1l2

3e−sl1 + l2das2e−l1
ass1−s2d. s37d

As a result we have obtained the Laplace transform of the
joint PDFhss2,t2;s1,t1d. Unfortunately, a closed form of the
inverse Laplace transform could not be calculated. The given

solution h̃ can be readily used, however, to derive meaning-
ful expressions that characterize the inverse processsstd.

1. Moments of the inverse process

In order to obtain further information about the process
sstd for multiple times we calculate the moments of the PDF.
Let us first demonstrate how this can be achieved for the
simple caseksst1dsst2dl. This moment is defined from the
PDF hss2,t2;s1,t1d as

ksst1dsst2dl =E
0

`

ds1E
0

`

ds2s1s2hss2,t2;s1,t1d

= L−1HE
0

`

ds1E
0

`

ds2s1s2h̃ss2,l2;s1,l1dJ ,

s38d

where the last step follows by interchanging inverse Laplace
transform and integration. The integrations with respect to
s1,s2 can be simply performed with the help of expression
Eq. s36d. The result is

E
0

`

ds1E
0

`

ds2s1s2h̃ss2,l2;s1,l1d

= sl1 + l2d−aHl1
−a−1

l2
+

l2
−a−1

l1
J . s39d

Now the inverse Laplace transform leads to an analytical
solution for ksst1dsst2dl ssee Appendix Bd:

ksst1dsst2dl = Ust2 − t1dH 1

Gs2a + 1d
t1
2a +

1

Gsa + 1d2

3t1
at2

aFSa,− a;a + 1;
t1
t2
DJ + Ust1 − t2d

3H 1

Gs2a + 1d
t2
2a +

1

Gsa + 1d2t1
at2

a

3FSa,− a;a + 1;
t2
t1
DJ . s40d

Here Fsa,b;c;zd denotes the hypergeometric functionssee,
e.g., Chap. 15 inf19gd.

One notices that in the limitt2→ t1 expressions40d agrees
with the second momentksstd2l:

ksstd2l = L−1HE
0

`

s2la−1e−sla
dsJ =

2

Gs2a + 1d
t2a, s41d

where Eq.s29d has been used. The simple single time mo-
ment ksstdl is given asksstdl=L−1hl−a−1j=f1/Gsa+1dtag.

The calculation of higher order moments essentially fol-
lows the same steps.

Furthermore, we introduce the operators] /]t1+] /]t2d1−a

in the sense of the single-time Riemann-Liouville fractional
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differential operator: Lhs] /]t1+] /]t2d−agst1,t2dj=sl1

+l2d−ag̃sl1,l2d ssee Appendix Ad. An explicit expression in
terms of an integral reads

S ]

]t1
+

]

]t2
D−a

gst1,t2d

=
1

GsadE0

minst1,t2d

dt8t8a−1gst1 − t8,t2 − t8d. s42d

Using this fractional differential operator, we are in the
position to write down a simple recursion relation for arbi-
trary moments ofhshsi ,tijd. The second moment Eq.s39d
reads

ksst1dsst2dl = S ]

]t1
+

]

]t2
D−a

hksst1dl + ksst2dlj. s43d

This immediately leads toswe assumet2. t1d

ksst2dsst1dl = f0Dt1
−ahksst2 − t̃1 + t1dl + ksst1dljgt̃1=t1

. s44d

The explicit expression allows one to obtain the fusion rule

lim
t2→t1

ksst2dsst1dl = ksst1d2l = 2
1

GsadE0

t1

dt8t8a−1ksst1 − t8dl

= 20Dt1
−asst1d. s45d

The calculation of the third-order momentksst1dsst2dsst3dl
along the same lines yields the result

ksst1dsst2dsst3dl = S ]

]t1
+

]

]t2
+

]

]t3
D−a

hksst1dsst2dl

+ ksst1dsst3dl + ksst2dsst3dlj. s46d

The third moment is obtained via fractional integration of the
sum of second-order moments. In the general case, the
nth-order moment is calculated by fractional integration with
respect ton times the sum of all permutations ofn−1 order
moments.

Due to the representation of the fractional operator

S ]

]t1
+

]

]t2
+

]

]t3
D−a

gst1,t2,t3d =
1

GsadE0

minst1,t2,t3d

dt8t8a−1gst1

− t8,t2 − t8,t3 − t8d, s47d

we can derive the fusion rule

lim
t3→t1+0

ksst3dsst2dsst1dl =
1

GsadE0

t1

dt8t8a−1hksst1 − t8dsst1 − t8dl

+ 2ksst2 − t8dsst1 − t8dlj

= 0Dt1
−ahksst1dsst1dl

+ 2ksst2 − t̃1 + t1dsst1dljt̃1=t1
. s48d

The fusiont2→ t1 leads to

ksst1d3l = 30Dt1
−aksst1d2l = 6Dt1

−aDt1
−aksst1dl = 60Dt1

−2aksst1dl.

s49d

The nth-order generalization reads

ksstdnl = n ! 0Dt
−sn−1daksstdl. s50d

This equation can also be derived directly fromh̃ss,ld.
Thus one can obtain a complete characterization of the pro-
cesssstd based on Eq.s37d or Eq. s36d, respectively. Below,
we shall show how to obtain these results on the basis
of an evolution equation for the multipoint PDF
hss1,t1; ¯ ;sN,tNd.

2. The structure of the N-time PDF

From Eq.s16d one can derive the general form of the PDF
h of the inverse processsstd. The two-time PDF readsshere
we assume the cases2.s1 for simplicityd

hss2,t2;s1,t1d =
]

]s1

]

]s2
E

0

t1

dt18E
0

t2

dt28pst28 − t18,s2 − s1dpst18,s1d

= −
]

]s1
E

0

t1

dt18hss2 − s1,t2 − t18dpst18,s1d. s51d

We define

Hss2 − s1,t2 − t1;s1 − s0,t1 − t0d

= −
]

]s1
E

0

t1

dt18hss2 − s1,t2 − t18dpst18 − t0,s1 − s0d.

s52d

The form of the three-time PDF is obtained in the same
way and reads fors3.s2.s1

hss3,t3;s2,t2;s1,t1d =
]

]s1

]

]s2
E

0

t1

dt18E
0

t2

dt28hss3 − s2,t3

− t28dpst28 − t18,s2 − s1dpst18,s1d s53d

with a straightforward extension to the general case.
With the help of Eq.s52d this expression can be repre-

sented according to

hss3,t3;s2,t2;s1,t1d = −
]

]s1
E

0

t1

dt18Hss3 − s2,t3 − t2;s2 − s1,t2

− t18dpst18,s1d. s54d

Recursively, we may define higher order functions

HNssN − sN−1,tN − tN−1; ¯ ;t1 − t0,s1 − s0d

= −
]

]s1
E

0

t1

dt18H
N−1ssN − sN−1,tN − tN−1; ¯ ;s2 − s1,t2

− t18dpst18 − t0,s1,s0d. s55d

The integrals cannot simply be evaluated and the relations
are formal. However, they show the underlying mathematical
structure of the statistical description of the inverse process
sstd.

3. Fractional evolution equation

In analogy to the single-time case, where we have speci-
fied a fractional differential equation forhss,td, we now es-
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tablish an evolution equation forhss2,t2;s1,t1d.
From Eq. s37d it is evident that the following equation

holds:

S ]

]s1
+

]

]s2
Dh̃ss2,l2;s1,l1d = − sl1 + l2dah̃ss2,l2;s1,l1d

s56d

with initial conditions

h̃s0,l2;0,l1d =
l1

a − sl1 + l2da + l2
a

l1l2
,

h̃ss2,l2;0,l1d =
sl2

adfsl1 + l2da − l2
ag

l1l2
e−l2

as2,

h̃s0,l2;s1,l1d =
sl1

adfsl1 + l2da − l1
ag

l1l2
e−l1

as1. s57d

A common way to solve first-order partial differential equa-
tions is the method of characteristics. Applying this method
to Eq.s56d with the given initial condition for each case, one
obtains the correct expressions Eq.s37d. Therefore Eq.s56d
determines the PDF in Laplace space.

Consequently, upon performing the inverse Laplace trans-
form, we derive thathss2,t2;s1,t1d obeys the fractional evo-
lution equation

S ]

]t1
+

]

]t2
Dhss2,t2;s1,t1d = − S ]

]t1
+

]

]t2
D1−aS ]

]s1

+
]

]s2
Dhss2,t2;s1,t1d, s58d

where the fractional differential operators] /]t1+] /]t2d1−a

has been defined according tos] /]t1+] /]t2d1−aFst2,t1d
ª s] /]t1+] /]t2ds] /]t1+] /]t2d−aFst2,t1d. The appearance of
fractional time derivatives in Eq.s58d reveals the non-
Markovian character of the stochastic processsstd and as a
consequence of the coupled processX(sstd).

The extension of the above result ton times is straight-
forward:

So
i=1

N
]

]ti
Dhshsi,tijd = −So

i=1

N
]

]ti
D1−aSo

i=1

N
]

]si
Dhshsi,tijd.

s59d

Again we want to emphasize that this single evolution equa-
tion with the proper initial condition sufficiently describes
the PDF for multiple times.

The above equation may also be used to calculate the
momentsksstNd¯sst1dl, which already have been specified
above. The fractional evolution equations59d implies the fol-
lowing relationship among the momentsksstNd¯sst1dl:

So
i=1

N
]

]ti
DksstNd ¯ sst1dl = So

i=1

N
]

]ti
D1−a

hksstN−1d ¯ sst1dl

+ permutationsj. s60d

These equations are equivalent to the chain of equationss46d
obtained by a direct inspection of the PDF’s.

V. TWO-TIME MOMENTS OF THE DIFFUSION PROCESS

In this last section we focus on the usual diffusion pro-
cess, i.e., we consider the Fokker-Planck operator

L =
]2

]x2 . s61d

In this case, the moments are polynomials ins and we may
directly use the results of the preceding section:

kxss2dxss1dl = Uss2 − s1ds1 + Uss1 − s2ds2. s62d

The corresponding moment with respect to timet is given by

kxst2dxst1dl =E
0

` E
0

`

ds1ds2hss2,t2;s1,t1dkxss2dxss1dl.

s63d

The integrations can be performed by inserting the PDFh in
Laplace space:

Lhkxst2dxst1dlj =
sl1 + l2da

l1l2
E

0

`

ds s e−sl1 + l2das

=
1

sl1 + l2dal1l2
. s64d

The inverse transform leads to the result

kxst2dxst1dl =
1

Gsa + 1d
hUst2 − t1dt1

a + Ust1 − t2dt2
aj

= Ust2 − t1dksst1dl + Ust1 − t2dksst2dl. s65d

Similarly, we may calculate the momentkxst2d2xst1d2l:

kxss2d2xss1d2l = s2s1 + 2Uss2 − s1ds1
2 + 2Uss1 − s2ds2

2.

s66d

This yields

kxst2d2xst1d2l = ksst2dsst1dl + 2Ust2 − t1dksst1d2l

+ 2Ust1 − t2dksst2d2l. s67d

For the evaluation ofkxss2d2mxss1d2nl we may use the prop-
erties of the moments of Gaussian processes which read for
n.m

kxss2d2mxss1d2nl = As2
ms1

n + BUss2 − s1ds1
n−ms2

m

+ BUss1 − s2ds2
n−ms1

m. s68d

The coefficientsA,B,C can be evaluated by an application
of Wick’s theorem for Gaussian processes.

The corresponding expression for the processXstd be-
comes accordingly
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kxst2d2mxst1d2nl = Aksst2dmsst1dnl + BUst2 − t1dksst1dn−msst2dml

+ BUst1 − t2dksst2dn−msst1dml. s69d

The calculation of the expectation valuesksst2d2msst1d2nl has
been discussed above.

VI. CONCLUSION

Up to now the discussion of continuous time random
walks and the corresponding fractional kinetic equations has
been focused on single-time probability distributions only.
On the basis of this PDF the scaling behavior of moments
has been compared with experiments. However, more infor-
mation has to be used in order to assign a definite stochastic
process to a non-Markovian process. To this end we have
considered multiple-time PDF for a certain class of stochas-
tic processes.

Our approach is based on the framework of coupled
Langevin equationss2d and s3d devised by Fogedby as a
realization of a continuous time random walk. Here, the so-
lution for the N-time PDF’s are given as an integral trans-
form of the PDF’s of an accompanying Markovian process.
We have shown that the non-Markovian character of this
process can be traced back to the properties of the inverse
Lévy-stable process.

The next step would be to compare these theoretical pre-
dictions with the behavior of physical systems which reveal
subdiffusive behavior. To our knowledge multiple-time sta-
tistics of such systems have not yet been investigated experi-
mentally. This would be of considerable interest. We may
expect that in some cases the consideration of multiple-time
statistics may lead to a more precise characterization of the
underlying stochastic process.

It is well known that for the single-time case a fractional
diffusion equation can be derived, which determines the PDF
fsx,td,

fsx,td =E
0

`

ds hss,tdf1sx,sd, s70d

as a solution of

]

]t
fsx,td = 0Dt

1−aLFPfsx,td. s71d

We would like to mention that a similar equation can be
derived for the multiple-time PDFfsx2,t2;x1,t1d. This will
be discussed in a future publication. The present article is a
starting point for the investigation of multiple-time PDF’s of
the coupled Langevin equations of Fogedby.
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APPENDIX A: FRACTIONAL DIFFERENTIAL OPERATOR

The Riemann-Liouville fractional integral is defined as a
generalization of the Cauchy formula to real ordersa:

0Dt
−agstd ª

1

GsadE0

t gst8d
st − t8d1−adt8 =

1

Gsad
ta−1 p gstd.

sA1d

Here p denotes a Laplace convolution. Consequently, per-
forming the Laplace transformation is straightforward and
yields the well-known result

Lh0Dt
−agstdj = l−ag̃sld. sA2d

From Eq.sA1d the Riemann-Liouville fractional differential
operator is obtained by simple partial derivation:

0Dt
1−agstd ª

]

]t0Dt
−agstd. sA3d

The extension of the fractional differential operator to two
times t1,t2 is now obtained in a way analogous to the steps
above.

First we define the fractional integral operator of two
times in Laplace space:

LHS ]

]t1
+

]

]t2
D−a

gst1,t2dJª sl1 + l2d−ag̃sl1,l2d.

sA4d

Furthermore the following equation holds:

E
0

`

dt1E
0

`

dt2e
− l1t1−l2t2

1

Gsad
t1
a−1dst2 − t1d

=E
0

`

dt1e
−t1sl1+l2d 1

Gsad
t1
a−1 = sl1 + l2d−a. sA5d

In physical time the fractional integral operator can thus
be considered as an expression containing a twofold Laplace
convolution with respect tot1 and t2, denoted withpp:

S ]

]t1
+

]

]t2
D−a

gst1,t2d =
1

Gsad
t1
a−1dst2 − t1d p p gst2,t1d

=
1

GsadE0

t1

dt18E
0

t2

dt28t81
a−1

3dst28,t18dgst2 − t28,t1 − t18d. sA6d

Here we can distinguish between the casest2, t1 and t2
. t1 which results in Eq.s47d. The fractional differential op-
erator of two times is then, corresponding to Eq.sA3d,

S ]

]t1
+

]

]t2
D1−a

gst1,t2d ª S ]

]t1
+

]

]t2
DS ]

]t1
+

]

]t2
D−a

gst1,t2d.

sA7d

In the generalN-time case the fractional integral operator
takes the form of anN-fold convolution

So
i=1

N
]

]ti
D−a

gst1,…,tNd =
1

Gsad
t1
a−1dstN − tN−1d ¯ dst2

− t1d p ¯ p gst1,…,tNd, sA8d

with Laplace transform
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LHSo
i=1

N
]

]ti
D−a

gst1,…,tNdJ = So
i=1

N

liD−a

g̃sl1,…,lNd.

sA9d

APPENDIX B: CALCULATION OF MOMENTS

Using the results of the previous section we can explicitly
write the second-order moment Eq.s43d as convolution inte-
grals:

ksst1dsst2dl =
1

GsadE0

t1

dt18E
0

t2

dt28t81
a−1dst28 − t18dH 1

Gsa + 1d
st1

− t18d
a +

1

Gsa + 1d
st2 − t28d

aJ . sB1d

If we distinguish between the casest2. t1 and t1. t2 in
order to perform the integrations, we obtain

ksst1dsst2dl = Ust2 − t1dH 1

Gs2a + 1d
t1
2a

+
1

GsadGsa + 1dE0

t1

dt8t8a−1st2 − t8daJ
+ Ust1 − t2dH 1

Gs2a + 1d
t2
2a

+
1

GsadGsa + 1dE0

t2

dt8t8a−1st1 − t8daJ .

sB2d

The integrals can be performed withMAPLE and lead to
the hypergeometric functionFsa,b;c;zd:

E
0

t1

dt8t8a−1st2 − t8da =
1

a
t1
at2

aFSa,− a;a + 1;
t1
t2
D . sB3d
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